Evaluation of Residual-Based Local Features for Camera Model Identification
نویسندگان
چکیده
Camera model identification is of interest for many applications. In-camera processes, specific of each model, leave traces that can be captured by features designed ad hoc, and used for reliable classification. In this work we investigate on the use of blind features based on the analysis of image residuals. In particular, features are extracted locally based on co-occurrence matrices of selected neighbors and then used to train an SVM classifier. Experiments on the well-known Dresden database show this approach to provide state-of-the-art performances.
منابع مشابه
A General Investigation on the Combination of Local and Global Feature Selection Methods for Request Identification in Telegram
Nowadays, the use of various messaging services is expanding worldwide with the rapid development of Internet technologies. Telegram is a cloud-based open-source text messaging service. According to the US Securities and Exchange Commission and based on the statistics given for October 2019 to present, 300 million people worldwide used telegram per month. Telegram users are more concentrated in...
متن کاملIdentification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model
In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...
متن کاملIntelligent identification of vehicle’s dynamics based on local model network
This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...
متن کاملAircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملModel-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کامل